一款小型化红外广角镜头的设计

朱佳巍,王旗,范俊辉,净晓东 中山市众盈光学有限公司,广东中山 528441

摘要 为满足现代智能化设备和红外交互识别的需求,利用 CodeV 和 Zemax 光学设计软件设计了一款小型化红 外广角镜头。该镜头使用 3 片塑胶非球面镜片和 1 片红外带通滤光片,其光学结构形式为负-正-正的结构;该镜头 的 F 数为 2.2,全视场最大角度为 129°,系统机械总长 3.8 mm。该设计在 1/2 奈奎斯特频率处各个视场的调制传 递函数值均大于 0.5。组装该镜头进行测试,其调制传递函数性能符合设计需求,可以较好地实现红外探测功能。 关键词 几何光学;红外广角镜头;CodeV 软件; Zemax 软件;塑胶非球面 中图分类号 TB851.1; TN214 文献标识码 A doi: 10.3788/LOP55.070801

Design of a Miniaturized Infrared Wide-Angle Lens

Zhu Jiawei, Wang Qi, Fan Junhui, Jing Xiaodong

Zhongshan Zhongying Optical Co., Limited, Zhongshan, Guangdong 528441, China

Abstract In order to meet the requirements of modern intelligent equipment and infrared interactive identification, we design a miniature infrared wide-angle lens by CodeV and Zemax optical design software. The lens is equipped with three plastic lenses and one infrared band pass filter. Its optical structure is negative-positive-positive. The design results show that F number is 2.2, the maximum viewing angle is 129° and the mechanical total length is 3.8 mm. Modulation transfer function (MTF) value of all fields is larger than 0.5 at 1/2 Nyquist frequency. The assembled lens is tested to show that MTF performance meets design requirements and the infrared detection function can be achieved.

Key words geometric optics; infrared wide-angle lens; CodeV software; Zemax software; plastic aspheric surface OCIS codes 080.3620; 110.2960; 170.0110

1引言

近年来,一系列智能化产品得到了广泛应用, 如:室内外遥控、安防系统、手势识别、人脸识别、眼 球跟踪等^[1]。红外广角镜头能够巧妙地利用近红外 波段的特点,更好地过滤杂光,减小其余波段杂光的 干扰,得到更精确的数据^[2]。因此,小型化红外广角 镜头的需求也越来越大。

调研目前小型化红外广角镜头后发现,已有的 相关专利中此类镜头主要存在以下两种缺陷:1)为 了提升系统的分辨率,该类红外镜头的视场角度小 于 90°,无法满足 120°以上大广角识别范围的需求, 如文献[3]中报道的美国专利 US2016/0274331 A1 产品;2)为了保证 180°以上超广角的特性,镜头光 学总长在 12 mm 以上,此光学系统无法满足小型化 的需求,如文献[4]中提及的美国专利 US2017/0131519 A1 产品。

为了突破目前红外广角镜头的缺陷,减小镜头 尺寸,降低制造成本,增大视场范围,本文使用 CodeV和Zemax光学设计软件设计了一款小型化 红外广角镜头(主要应用在智能行李箱对使用者的 识别与跟踪方面),该镜头采用3片塑胶非球面镜 片,简化了光学系统,在保证视场角的情况下降低了 光学总长。

2 设计要点及初始结构的建立

2.1 芯片匹配及主要设计指标

红外广角镜头通常以近红外光作为光源,搭配 互补金属氧化物半导体(CMOS)或电荷耦合器件 (CCD)图像传感器。CMOS感光器件具有功耗低、

收稿日期: 2017-12-14; 收到修改稿日期: 2018-01-09

作者简介:朱佳巍(1989—),男,硕士,主要从事光学系统设计研究方面的工作。E-mail: Jovi@zenithpe.com

集成度高、性价比高等显著优势,应用非常广泛^[5]。 本设计采用 808 nm 激光光源,有利于实现窄带传 输,尽可能避免其他光谱的干扰。与镜头匹配的感 光芯片为豪威公司的 OV7750 1/7.5 inch(1 in = 2.54 cm)CMOS 芯片,该芯片单个像素的大小为 3.0 μm×3.0 μm,分辨率为 640 pixel×480 pixel,对 角线长度为 2.4 mm。表 1 列出了自行设计的小型 化红外广角镜头的主要设计参数。

表1 红外广角镜头的主要设计参数

Γable 1 Main desig	n parameters of	f infrared	wide-angle	lens
--------------------	-----------------	------------	------------	------

Item	Specification		
Diagonal field of view /(°)	≥120		
Effective focal length /mm	0.7-0.9		
F number	<2.4		
Optical distortion	< 30 %		
Infrared wavelength /nm	808		
Relative illumination	> 40 %		
Working distance	300 mm-5 m		
Total length /mm	$\leqslant 4$		
Lens structure	3Plastic+IR pass filter		
Chiefray angle /(°)	<30		

2.2 初始结构光焦度的分配

首先对该系统前后组元进行拆分,根据校正场曲的条件可知,当系统前后组元的光焦度互为相反数时,场曲刚好得到校正。校正场曲的条件为

$$S_{\rm IV} = J^2 \phi \sum_{I=1}^k \mu$$
, (1)

式中:J 为拉-赫不变量; ϕ 为薄透镜组的光焦度; $\mu = \sum \frac{\varphi}{n} / \phi_j$,其中 $n \ \pi \varphi$ 分别为单个薄透镜的折射 率与光焦度^[6]。

本实验在光阑两侧采用负-正的结构形式,利用 前后组元光焦度等值相反以及两者的组合焦距为 0.8 mm作为主要约束条件,配合系统总长及像方主 光线入射角的限制,先在 Zemax 光学设计软件中建 立理想透镜系统,并进行初始结构的优化,优化后的 效果 如图 1 所示,此时前后组元焦距分别为 -1.5 mm和 1.5 mm。

由于该系统属于大视场光学系统,只用2片镜 片不能得到良好的像质,现将前组拆分为2片镜片。 若前组均为负透镜,后组均为正透镜,则无法校正像 差,故将前组拆分为负-正结构,此时整个系统为负-正-正结构^[7]。

使用与第一次同样的优化方法进行调整,得到 了理想透镜的光路形式,如图 2 所示。此时 3 片镜 片的焦距分别为-0.96,1.98,1.3 mm。

图 1 两组元初始结构

Fig. 1 Initial structure of two elements

2.3 PW 法计算确定实体结构

由于该镜头的设计光源为 808 nm 的近红外 光,此时可以近似忽略色差的影响,为了保证在不影 响性能的情况下尽可能降低成本,本研究所用 3 片 镜片均采用 APEL5014CL 塑胶材料,该材料具有较 高的折射率和透过率,且易于注塑成型。

在光学设计过程中应用的 PWC 法是求解光学 系统初始结构的一种方法,但是该方法的计算较为 复杂,且计算量大。本研究通过数学软件 Mathematica来求解像差方程,以提高计算速度和 精度。通过提取之前利用 Zemax 软件建立的初始 光路参数,应用 PWC 法得到系统球面实体的初始 结构,如图 3 所示。

3 设计优化及评价

3.1 优化设计

利用 CodeV 软件中拉格朗日因子算法的先进 性^[8],对上述实体初始结构进行优化调整,主要的优 化控制条件如下:

 1)首先在初始球面实体结构上逐阶添加各镜 片的非球面阶数,并不断配合优化函数进行调整。

图 3 实体初始结构

Fig. 3 Initial structure of entity

2) 在优化函数中,系统结构参数的约束条件主要用以控制光学总长小于4 mm,最大光学口径在4 mm以内;控制语句分别为 OAL S1..I<4 和 SD S1 Z1<4。

3) 系统的一阶参数约束条件主要包括对系统的焦距、像高进行控制,焦距在设计要求的 0.7 mm~0.9 m范围即可。另外,为了保证实际装 配中无暗角,像高需要在芯片对角线高度的基础上 增大 5%的余量,以确保量产性增大至 8%,即最大 像面为 2.6 mm。 4) 此类近似单一波长的系统,其色差的影响很小,设计过程中重点需要调整球差、慧差、场曲和像散。另外,在CodeV中以横向像差作为默认误差函数,配合限约束的权重(WTC)以及各个视场的权重(WTF)来获得更好的优化结果。

3.2 优化后的光学结构

优化后的光学系统如图 4 所示,从左向右分别 为镜片一、镜片二、孔径光阑、镜片三、红外带通滤光 片,表 2 为该镜头的结构参数。

图 4 优化后的镜头结构

表 2 镜头的结构参数

Surface	Туре	Radius /mm	Thickness /mm	Glass	Semi-aperture /mm
Object	Sphere	∞	400		
1	Asphere	7.09	0.28	APEL5014CL	1.46
2	Asphere	0.43	0.32		0.711
3	Asphere	0.75	0.52	APEL5014CL	0.658
4	Asphere	2.02	0.14		0.376
Stop	Asphere	∞	0.10		0.266
6	Asphere	4.85	0.66	APEL5014CL	0.484
7	Asphere	-0.55	0.06		0.638
8	Sphere	∞	1.00	HK9L	0.821
9	Sphere	∞	0.58		1.089
Image	Sphere	∞	0		1.323

该光学系统的设计参数如表 3 所示,与设计指

标对比后可知,其完全符合设计需求。

表 3 光学系统的设计参数

Table 3 Design parameters of optical system

Item	Specification		
Diagonal field of view /(°)	129		
Effective focal length /mm	0.78		
F number	2.2		
Optical distortion	$<\!28\%$		
Infrared wavelength /nm	808		
Relative illumination	> 48 %		
Working distance	100 mm-infinity		
Total length /mm	3.8		
Lens structure	3Plastic+IR pass filter		
Chiefray angle /(°)	27		

3.3 像质评价

3.3.1 调制传递函数(MTF)

由于该红外广角镜头主要应用在红外探测、交 互、识别等方面,对整个视场的 MTF 值要求较高, 需要各视场在 1/2 奈奎斯特频率下的 MTF 值均大 于 0.5^[9],且还需要满足较大的景深范围。结果显 示,在 400 mm 处对焦后,可以满足从 100 mm 到无 穷远物距范围。图 5 为 100 mm、400 mm 及无穷远 物距距离的 MTF 曲线图。

3.3.2 场曲、像散和畸变

场曲、像散和畸变分别反映了光学系统像面的 弯曲、弧失和子午焦点偏离的情况,对于一般的广角

图 5 不同物距时奈奎斯特频率下的 MTF 曲线图。(a) 100 mm;(b) 400 mm;(c)无穷远

Fig. 5 MTF curves at Nyquist frequency and different working distances. (a) 100 mm; (b) 400 mm; (c) infinity
类镜头而言,要求场曲和像散均小于 0.1 mm^[10],从 中的畸变在最大视场处控制在 28%以内,可以满足 图 6 可知两者均校正在 0.05 mm 以内。另外,图 6 设计指标。

图 6 (a)场曲和(b)畸变图 Fig. 6 (a) Field curvature and (b) distortion

3.3.3 相对照度

相对照度主要用来描述边缘视场的照度相对中 心视场衰减的情况。对于红外广角镜头而言,其相 对照度需要控制在40%以上才能不影响实际使用。 由图7可知,本研究设计产品的相对照度在48%以 上,符合使用要求。

4 镜头的公差及实测结果

4.1 公差分析

为了使本设计方案能够满足实际加工、生产的

激光与光电子学进展

需求,通过统计分析CodeV软件产生的扰动量,提

前预测了生产的良率情况。基于 CodeV 软件得到 的公差干扰量如表 4 所示。其中:DLT 为厚度误 差,DLR 为半径误差,DLN 为折射率误差,DLV 为 阿贝数误差,TRY 为 Y 方向楔形误差,BTY 为镜筒 倾斜误差;S1..2 为透镜一,S3..4 为透镜二,S6..7 为 透镜三。

本研究使用 CodeV 公差分析中的 MTF 分析 方式,搭配表 4 所示的干扰量进行模拟,此时的公差 灵敏度如图 8 所示,在 1/2 奈奎斯特频率 (83 lp/mm)下,MTF 数值均可以大于 0.5,可以满 足实际生产的需求。

表 4 公差参数设置表 Table 4 Tolerance parameters

Number	Туре	Value	Number	Туре	Value		
1	DLT S1	0.004	13	TRY S1	0.002		
2	DLT S2	0.004	14	TRY S3	0.002		
3	DLT S3	0.004	15	TRY S6	0.002		
4	DLT S4	0.004	16	BTY S12	0.003		
5	DLT S6	0.004	17	BTY S34	0.003		
6	DLT S7	0.004	18	BTY S67	0.003		
7	DLR S1	0.005	19	DLN S1	0.002		
8	DLR S2	0.005	20	DLN S3	0.002		
9	DLR S3	0.005	21	DLN S6	0.002		
10	DLR S4	0.005	22	DLV S1	0.008		
11	DLR S6	0.005	23	DLV S3	0.005		
12	DLR S7	0.005	24	DLV S6	0.008		

4.2 测试结果

该镜头产品如图 9 所示,使用深圳度信公司的 测试平台搭配 OV7750 芯片在波长为 808 nm 的近 红外光源下进行实拍测试,在 400 mm 处对焦后,分 别测试了 100,400 mm 以及 5 m 距离时的实拍效 果,实拍图片如图 10 所示,实拍结果如表 5 所示。 测试结果表明,在检测频率为 83 lp/mm 的条件下, MTF 值均能大于 0.5,其中 B0~B9 分别代表其在 图片中所占的区域。

图 9 镜头产品图 Fig. 9 Picture of lens

图 10 测试图片 Fig. 10 Test image

表 5 MTF 测试结果 Table 5 Test value of MTF

Distance / mm	B0	B1	B2	B3	B4	В9	B6	B7	B8
100	0.72	0.61	0.60	0.62	0.61	0.67	0.68	0.66	0.68
400	0.76	0.63	0.62	0.62	0.60	0.69	0.68	0.67	0.68
5000	0.74	0.62	0.63	0.61	0.60	0.69	0.69	0.68	0.68

5 结 论

利用两种光学设计软件 CodeV 和 Zemax 各自的特点,设计优化了一款小型化红外广角镜头。该镜头采用负-正-正的光学形式,结构紧凑,便于集成 在智能化设备上;其各项指标均能够满足设计要求; 将其组装后进行测试,在 1/2 奈奎斯特频率处,各个 视场的 MTF 值均能大于 0.5,符合红外应用的 要求。

参考文献

- [1] Sun A P, Gong Y Y, Chen Z, et al. Athermal design a large-aperture, wide-field assisting pilot infrared lens [J]. Infrared Technology, 2013, 35 (10): 617-622.
 孙爱平,龚杨云,陈忠,等.大孔径、大视场辅助驾驶仪红外镜头无热化设计[J]. 红外技术, 2013, 35 (10): 617-622.
- [2] Gao Y F, Zhang B, Song G H, et al. Optical design of iris recognition lens [J]. Laser & Optoelectronics Progress, 2017, 54(1): 012204.
 高永锋,张变,宋光辉,等.虹膜识别镜头的光学设计[J].激光与光电子学进展,2017,54(1): 012204.
- [3] Hsueh C C, Chen W Y. Optical lens system, imaging device and electronic device: US2016/ 0274331 A1[P]. 2016-09-22.

- [4] Hsieh T Y, Chen W Y. Image capturing optical lens assembly, image capturing device and electronic device: US2017/0131519 A1[P]. 2017-04-11.
- [5] Li J J, Du Y G, Zhang L H, et al. Research progress on CMOS image sensors [J]. Laser & Optoelectronics Progress, 2009, 54(4): 012204.
 李继军, 杜云刚, 张丽华, 等. CMOS 图像传感器的 研究进展[J]. 激光与光电子学进展, 2009, 54(4): 012204.
- [6] Zhang Y M. Applied optics [M]. Beijing: Beijing Publishing House of Electronics Industry, 2008: 441-448.
 张以谟.应用光学 [M].北京:电子工业出版社, 2008: 441-448.
- [7] Wang Y Z. Fisheye lens optics [M]. Beijing: Machine Industry Press, 2006: 196-197.
 王永仲. 鱼眼镜头光学[M].北京:科技出版社, 2006: 196-197.
- [8] Optical Research Association. CODEV 11. 0 introductory users guide [M]. USA: Optical Research Associates, 2017: 44-48.
- [9] Liu Y, Han M, Ju R B, et al. Design and instance of sport digital video fisheye lens [J]. Laser &. Optoelectronics Progress, 2016, 53(8): 082201.
 刘言, 韩敏, 居荣兵, 等. 运动数码摄像机鱼眼镜头的设计与实例[J]. 激光与光电子学进展, 2016, 53(8): 082201.
- [10] Wu H Q, Zhao X L, Li T H, et al. Optical system design of refractive/diffractive infrared fish eye lens
 [J]. Acta Photonica Sinica, 2010, 39(8): 1533-1536
 吴海清,超心亮,李同海,等.折射/衍射红外鱼眼
 镜头光学系统设计[J].光子学报, 2010, 39(8): 1533-1536.